Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Simple Codes and Sparse Recovery with Fast Decoding (1901.02852v3)

Published 9 Jan 2019 in cs.IT and math.IT

Abstract: Construction of error-correcting codes achieving a designated minimum distance parameter is a central problem in coding theory. In this work, we study a very simple construction of binary linear codes that correct a given number of errors $K$. Moreover, we design a simple, nearly optimal syndrome decoder for the code as well. The running time of the decoder is only logarithmic in the block length of the code, and nearly linear in the number of errors $K$. This decoder can be applied to exact for-all sparse recovery over any field, improving upon previous results with the same number of measurements. Furthermore, computation of the syndrome from a received word can be done in nearly linear time in the block length. We also demonstrate an application of these techniques in non-adaptive group testing, and construct simple explicit measurement schemes with $O(K2 \log2 N)$ tests and $O(K3 \log2 N)$ recovery time for identifying up to $K$ defectives in a population of size $N$.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.