Intersection disjunctions for reverse convex sets (1901.02112v5)
Abstract: We present a framework to obtain valid inequalities for a reverse convex set: the set of points in a polyhedron that lie outside a given open convex set. Reverse convex sets arise in many models, including bilevel optimization and polynomial optimization. An intersection cut is a well-known valid inequality for a reverse convex set that is generated from a basic solution that lies within the convex set. We introduce a framework for deriving valid inequalities for the reverse convex set from basic solutions that lie outside the convex set. We first propose an extension to intersection cuts that defines a two-term disjunction for a reverse convex set, which we refer to as an intersection disjunction. Next, we generalize this analysis to a multi-term disjunction by considering the convex set's recession directions. These disjunctions can be used in a cut-generating linear program to obtain valid inequalities for the reverse convex set.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.