Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High order numerical schemes for solving fractional powers of elliptic operators (1901.00201v1)

Published 1 Jan 2019 in cs.NA and math.NA

Abstract: In many recent applications when new materials and technologies are developed it is important to describe and simulate new nonlinear and nonlocal diffusion transport processes. A general class of such models deals with nonlocal fractional power elliptic operators. In order to solve these problems numerically it is proposed (Petr N. Vabishchevich, Journal of Computational Physics. 2015, Vol. 282, No.1, pp.289--302) to consider equivalent local nonstationary initial value pseudo-parabolic problems. Previously such problems were solved by using the standard implicit backward and symmetrical Euler methods. In this paper we use the one-parameter family of three-level finite difference schemes for solving the initial value problem for the first order nonstationary pseudo-parabolic problem. The fourth-order approximation scheme is developed by selecting the optimal value of the weight parameter. The results of the theoretical analysis are supplemented by results of extensive computational experiments.

Citations (8)

Summary

We haven't generated a summary for this paper yet.