Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyses of the contour integral method for time fractional subdiffusion-normal transport equation (2210.09594v2)

Published 18 Oct 2022 in math.NA and cs.NA

Abstract: In this work, we theoretically and numerically discuss the time fractional subdiffusion-normal transport equation, which depicts a crossover from sub-diffusion (as $t\rightarrow 0$) to normal diffusion (as $t\rightarrow \infty$). Firstly, the well-posedness and regularities of the model are studied by using the bivariate Mittag-Leffler function. Theoretical results show that after introducing the first-order derivative operator, the regularity of the solution can be improved in substance. Then, a numerical scheme with high-precision is developed no matter the initial value is smooth or non-smooth. More specifically, we use the contour integral method (CIM) with parameterized hyperbolic contour to approximate the temporal local and non-local operators, and employ the standard Galerkin finite element method for spacial discretization. Rigorous error estimates show that the proposed numerical scheme has spectral accuracy in time and optimal convergence order in space. Besides, we further improve the algorithm and reduce the computational cost by using the barycentric Lagrange interpolation. Finally, the obtained theoretical results as well as the acceleration algorithm are verified by several 1-D and 2-D numerical experiments, which also show that the numerical scheme developed in this paper is effective and robust.

Citations (2)

Summary

We haven't generated a summary for this paper yet.