Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Open-endedness in AI systems, cellular evolution and intellectual discussions (1812.10900v1)

Published 28 Dec 2018 in cs.AI and physics.bio-ph

Abstract: One of the biggest challenges that AI research is facing in recent times is to develop algorithms and systems that are not only good at performing a specific intelligent task but also good at learning a very diverse of skills somewhat like humans do. In other words, the goal is to be able to mimic biological evolution which has produced all the living species on this planet and which seems to have no end to its creativity. The process of intellectual discussions is also somewhat similar to biological evolution in this regard and is responsible for many of the innovative discoveries and inventions that scientists and engineers have made in the past. In this paper, we present an information theoretic analogy between the process of discussions and the molecular dynamics within a cell, showing that there is a common process of information exchange at the heart of these two seemingly different processes, which can perhaps help us in building AI systems capable of open-ended innovation. We also discuss the role of consciousness in this process and present a framework for the development of open-ended AI systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Kushal Shah (21 papers)

Summary

We haven't generated a summary for this paper yet.