Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Discrete Choice Models with Representation Learning (1812.09747v3)

Published 23 Dec 2018 in stat.ML and cs.LG

Abstract: In discrete choice modeling (DCM), model misspecifications may lead to limited predictability and biased parameter estimates. In this paper, we propose a new approach for estimating choice models in which we divide the systematic part of the utility specification into (i) a knowledge-driven part, and (ii) a data-driven one, which learns a new representation from available explanatory variables. Our formulation increases the predictive power of standard DCM without sacrificing their interpretability. We show the effectiveness of our formulation by augmenting the utility specification of the Multinomial Logit (MNL) and the Nested Logit (NL) models with a new non-linear representation arising from a Neural Network (NN), leading to new choice models referred to as the Learning Multinomial Logit (L-MNL) and Learning Nested Logit (L-NL) models. Using multiple publicly available datasets based on revealed and stated preferences, we show that our models outperform the traditional ones, both in terms of predictive performance and accuracy in parameter estimation. All source code of the models are shared to promote open science.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Brian Sifringer (3 papers)
  2. Virginie Lurkin (8 papers)
  3. Alexandre Alahi (100 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.