Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Supervised Learning for Individual Data (1812.09520v1)

Published 22 Dec 2018 in cs.IT, cs.LG, math.IT, and stat.ML

Abstract: Universal supervised learning is considered from an information theoretic point of view following the universal prediction approach, see Merhav and Feder (1998). We consider the standard supervised "batch" learning where prediction is done on a test sample once the entire training data is observed, and the individual setting where the features and labels, both in the training and test, are specific individual quantities. The information theoretic approach naturally uses the self-information loss or log-loss. Our results provide universal learning schemes that compete with a "genie" (or reference) that knows the true test label. In particular, it is demonstrated that the main proposed scheme, termed Predictive Normalized Maximum Likelihood (pNML), is a robust learning solution that outperforms the current leading approach based on Empirical Risk Minimization (ERM). Furthermore, the pNML construction provides a pointwise indication for the learnability of the specific test challenge with the given training examples

Citations (10)

Summary

We haven't generated a summary for this paper yet.