Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Data-Dependent Learnability (2011.10334v1)

Published 20 Nov 2020 in cs.LG and stat.ML

Abstract: The predictive normalized maximum likelihood (pNML) approach has recently been proposed as the min-max optimal solution to the batch learning problem where both the training set and the test data feature are individuals, known sequences. This approach has yields a learnability measure that can also be interpreted as a stability measure. This measure has shown some potential in detecting out-of-distribution examples, yet it has considerable computational costs. In this project, we propose and analyze an approximation of the pNML, which is based on influence functions. Combining both theoretical analysis and experiments, we show that when applied to neural networks, this approximation can detect out-of-distribution examples effectively. We also compare its performance to that achieved by conducting a single gradient step for each possible label.

Summary

We haven't generated a summary for this paper yet.