Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Character polynomials for two rows and hook partitions (1812.09377v1)

Published 21 Dec 2018 in math.CO

Abstract: Representation theory of the symmetric group $\mathfrak{S}_n$ has a very distinctive combinatorial flavor. The conjugacy classes as well as the irreducible characters are indexed by integer partitions $\lambda \vdash n$. We introduce class functions on $\mathfrak{S}_n$ that count the number of certain tilings of Young diagrams. The counting interpretation gives a uniform expression of these class functions in the ring of character polynomials, as defined by \cite{murnaghanfirst}. A modern treatment of character polynomials is given in \cite{orellana-zabrocki}. We prove a relation between these combinatorial class functions in the (virtual) character ring. From this relation, we were able to prove Goupil's generating function identity \cite{goupil}, which can then be used to derive Rosas' formula \cite{rosas} for Kronecker coefficients of hook shape partitions and two row partitions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)