Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Semiclassical path to cosmic large-scale structure (1812.05633v2)

Published 13 Dec 2018 in astro-ph.CO

Abstract: We chart a path toward solving for the nonlinear gravitational dynamics of cold dark matter by relying on a semiclassical description using the propagator. The evolution of the propagator is given by a Schr\"odinger equation, where the small parameter $\hbar$ acts as a softening scale that regulates singularities at shell-crossing. The leading-order propagator, called free propagator, is the semiclassical equivalent of the Zel'dovich approximation (ZA), that describes inertial particle motion along straight trajectories. At next-to-leading order, we solve for the propagator perturbatively and obtain, in the classical limit the displacement field from second-order Lagrangian perturbation theory (LPT). The associated velocity naturally includes an additional term that would be considered as third order in LPT. We show that this term is actually needed to preserve the underlying Hamiltonian structure, and ignoring it could lead to the spurious excitation of vorticity in certain implementations of second-order LPT. We show that for sufficiently small $\hbar$ the corresponding propagator solutions closely resemble LPT, with the additions that spurious vorticity is avoided and the dynamics at shell-crossing is regularised. Our analytical results possess a symplectic structure that allows us to advance numerical schemes for the large-scale structure. For times shortly after shell-crossing, we explore the generation of vorticity, which in our method does not involve any explicit multi-stream averaging, but instead arises naturally as a conserved topological charge.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.