Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Multi-task Learning Approach to Skin Lesion Classification (1812.03527v3)

Published 9 Dec 2018 in cs.CV

Abstract: Skin lesion identification is a key step toward dermatological diagnosis. When describing a skin lesion, it is very important to note its body site distribution as many skin diseases commonly affect particular parts of the body. To exploit the correlation between skin lesions and their body site distributions, in this study, we investigate the possibility of improving skin lesion classification using the additional context information provided by body location. Specifically, we build a deep multi-task learning (MTL) framework to jointly optimize skin lesion classification and body location classification (the latter is used as an inductive bias). Our MTL framework uses the state-of-the-art ImageNet pretrained model with specialized loss functions for the two related tasks. Our experiments show that the proposed MTL based method performs more robustly than its standalone (single-task) counterpart.

Citations (21)

Summary

We haven't generated a summary for this paper yet.