Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Microaggregation for Privacy-Preserving Data Mining (1812.01790v1)

Published 4 Dec 2018 in cs.CR, cs.DB, and cs.IR

Abstract: k-Anonymity by microaggregation is one of the most commonly used anonymization techniques. This success is owe to the achievement of a worth of interest tradeoff between information loss and identity disclosure risk. However, this method may have some drawbacks. On the disclosure limitation side, there is a lack of protection against attribute disclosure. On the data utility side, dealing with a real datasets is a challenging task to achieve. Indeed, the latter are characterized by their large number of attributes and the presence of noisy data, such that outliers or, even, data with missing values. Generating an anonymous individual data useful for data mining tasks, while decreasing the influence of noisy data is a compelling task to achieve. In this paper, we introduce a new microaggregation method, called HM-PFSOM, based on fuzzy possibilistic clustering. Our proposed method operates through an hybrid manner. This means that the anonymization process is applied per block of similar data. Thus, we can help to decrease the information loss during the anonymization process. The HMPFSOM approach proposes to study the distribution of confidential attributes within each sub-dataset. Then, according to the latter distribution, the privacy parameter k is determined, in such a way to preserve the diversity of confidential attributes within the anonymized microdata. This allows to decrease the disclosure risk of confidential information.

Citations (11)

Summary

We haven't generated a summary for this paper yet.