Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Directions in Anonymization: Permutation Paradigm, Verifiability by Subjects and Intruders, Transparency to Users (1501.04186v1)

Published 17 Jan 2015 in cs.DB and cs.CR

Abstract: There are currently two approaches to anonymization: "utility first" (use an anonymization method with suitable utility features, then empirically evaluate the disclosure risk and, if necessary, reduce the risk by possibly sacrificing some utility) or "privacy first" (enforce a target privacy level via a privacy model, e.g., k-anonymity or epsilon-differential privacy, without regard to utility). To get formal privacy guarantees, the second approach must be followed, but then data releases with no utility guarantees are obtained. Also, in general it is unclear how verifiable is anonymization by the data subject (how safely released is the record she has contributed?), what type of intruder is being considered (what does he know and want?) and how transparent is anonymization towards the data user (what is the user told about methods and parameters used?). We show that, using a generally applicable reverse mapping transformation, any anonymization for microdata can be viewed as a permutation plus (perhaps) a small amount of noise; permutation is thus shown to be the essential principle underlying any anonymization of microdata, which allows giving simple utility and privacy metrics. From this permutation paradigm, a new privacy model naturally follows, which we call (d,v)-permuted privacy. The privacy ensured by this method can be verified by each subject contributing an original record (subject-verifiability) and also at the data set level by the data protector. We then proceed to define a maximum-knowledge intruder model, which we argue should be the one considered in anonymization. Finally, we make the case for anonymization transparent to the data user, that is, compliant with Kerckhoff's assumption (only the randomness used, if any, must stay secret).

Citations (55)

Summary

We haven't generated a summary for this paper yet.