Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Some manifold learning considerations towards explicit model predictive control (1812.01173v2)

Published 4 Dec 2018 in math.OC

Abstract: Model predictive control (MPC) is a de facto standard control algorithm across the process industries. There remain, however, applications where MPC is impractical because an optimization problem is solved at each time step. We present a link between explicit MPC formulations and manifold learning to enable facilitated prediction of the MPC policy. Our method uses a similarity measure informed by control policies and system state variables, to "learn" an intrinsic parametrization of the MPC controller using a diffusion maps algorithm, which will also discover a low-dimensional control law when it exists as a smooth, nonlinear combination of the state variables. We use function approximation algorithms to project points from state space to the intrinsic space, and from the intrinsic space to policy space. The approach is illustrated first by "learning" the intrinsic variables for MPC control of constrained linear systems, and then by designing controllers for an unstable nonlinear reactor.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.