Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Positive semidefinite approximations to the cone of copositive kernels (1812.00274v1)

Published 1 Dec 2018 in math.OC

Abstract: It has been shown that the maximum stable set problem in some infinite graphs, and the kissing number problem in particular, reduces to a minimization problem over the cone of copositive kernels. Optimizing over this infinite dimensional cone is not tractable, and approximations of this cone have been hardly considered in literature. We propose two convergent hierarchies of subsets of copositive kernels, in terms of non-negative and positive definite kernels. We use these hierarchies and representation theorems for invariant positive definite kernels on the sphere to construct new SDP-based bounds on the kissing number. This results in fast-to-compute upper bounds on the kissing number that lie between the currently existing LP and SDP bounds.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.