Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 455 tok/s Pro
Kimi K2 194 tok/s Pro
2000 character limit reached

Modulating traveling fronts for the Swift-Hohenberg equation in the case of an additional conservation law (1811.12178v2)

Published 29 Nov 2018 in math.AP and math.DS

Abstract: We consider the one-dimensional Swift-Hohenberg equation coupled to a conservation law. As a parameter increases the system undergoes a Turing bifurcation. We study the dynamics near this bifurcation. First, we show that stationary, periodic solutions bifurcate from a homogeneous ground state. Second, we construct modulating traveling fronts which model an invasion of the unstable ground state by the periodic solutions. This provides a mechanism of pattern formation for the studied system. The existence proof uses center manifold theory for a reduction to a finite-dimensional problem. This is possible despite the presence of infinitely many imaginary eigenvalues for vanishing bifurcation parameter since the eigenvalues leave the imaginary axis with different velocities if the parameter increases. Furthermore, compared to non-conservative systems, we address new difficulties arising from an additional neutral mode at Fourier wave number $k=0$ by exploiting that the amplitude of the conserved variable is small compared to the other variables.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)