Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D Shape Reconstruction from a Single 2D Image via 2D-3D Self-Consistency (1811.12016v1)

Published 29 Nov 2018 in cs.CV

Abstract: Aiming at inferring 3D shapes from 2D images, 3D shape reconstruction has drawn huge attention from researchers in computer vision and deep learning communities. However, it is not practical to assume that 2D input images and their associated ground truth 3D shapes are always available during training. In this paper, we propose a framework for semi-supervised 3D reconstruction. This is realized by our introduced 2D-3D self-consistency, which aligns the predicted 3D models and the projected 2D foreground segmentation masks. Moreover, our model not only enables recovering 3D shapes with the corresponding 2D masks, camera pose information can be jointly disentangled and predicted, even such supervision is never available during training. In the experiments, we qualitatively and quantitatively demonstrate the effectiveness of our model, which performs favorably against state-of-the-art approaches in either supervised or semi-supervised settings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yi-Lun Liao (9 papers)
  2. Yao-Cheng Yang (1 paper)
  3. Yu-Chiang Frank Wang (88 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.