Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

The space of traces in symmetric monoidal infinity categories (1811.11654v2)

Published 28 Nov 2018 in math.CT and math.AT

Abstract: We define a tracelike transformation to be a natural family of conjugation invariant maps $T_{x,C}: hom_C(x,x) \to hom_C(1,1)$ for all dualisable objects $x$ in any symmetric monoidal infinity-category $C$. This generalises the trace from linear algebra that assigns a scalar $Tr(f) \in k$ to any endomorphism $f:V \to V$ of a finite-dimensional $k$-vector space. Our main theorem computes the moduli space of tracelike transformations using the one-dimensional cobordism hypothesis with singularities. As a consequence we show that the trace $Tr$ can be uniquely extended to a tracelike transformation up to a contractible space of choices. This allows us to give several model-independent characterisations of the infinity-categorical trace. Restricting our notion of tracelike transformations from endomorphisms to automorphisms we in particular recover a theorem of To\"en and Vezzosi. Other examples of tracelike transformations are for instance given by $f \mapsto Tr(fn)$. Unlikefor $Tr$ the relevant connected component of the moduli space is not contractible, but ratherequivalent to $B\mathbb{Z}/n\mathbb{Z}$ or $BS1$ for $n=0$. As a result we obtain a $\mathbb{Z}/n\mathbb{Z}$-action on $Tr(fn)$ as well as a circle action on $Tr(id_x)$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)