Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Gated Recurrent Unit Based Acoustic Modeling with Batch Normalization and Enlarged Context (1811.10169v1)

Published 26 Nov 2018 in cs.CL and eess.AS

Abstract: The use of future contextual information is typically shown to be helpful for acoustic modeling. Recently, we proposed a RNN model called minimal gated recurrent unit with input projection (mGRUIP), in which a context module namely temporal convolution, is specifically designed to model the future context. This model, mGRUIP with context module (mGRUIP-Ctx), has been shown to be able of utilizing the future context effectively, meanwhile with quite low model latency and computation cost. In this paper, we continue to improve mGRUIP-Ctx with two revisions: applying BN methods and enlarging model context. Experimental results on two Mandarin ASR tasks (8400 hours and 60K hours) show that, the revised mGRUIP-Ctx outperform LSTM with a large margin (11% to 38%). It even performs slightly better than a superior BLSTM on the 8400h task, with 33M less parameters and just 290ms model latency.

Citations (3)

Summary

We haven't generated a summary for this paper yet.