Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Canonical Duality Theory and Algorithm for Solving Bilevel Knapsack Problems with Applications (1811.10130v1)

Published 26 Nov 2018 in math.OC and cs.DM

Abstract: A novel canonical duality theory (CDT) is presented for solving general bilevel mixed integer nonlinear optimization governed by linear and quadratic knapsack problems. It shows that the challenging knapsack problems can be solved analytically in term of their canonical dual solutions. The existence and uniqueness of these analytical solutions are proved. NP-Hardness of the knapsack problems is discussed. A powerful CDT algorithm combined with an alternative iteration and a volume reduction method is proposed for solving the NP-hard bilevel knapsack problems. Application is illustrated by a benchmark problem in optimal topology design. The performance and novelty of the proposed method are compared with the popular commercial codes.

Citations (6)

Summary

We haven't generated a summary for this paper yet.