Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Canonical Duality Theory for Topology Optimization (1612.05684v2)

Published 17 Dec 2016 in cs.DM and math.OC

Abstract: This paper presents a canonical duality approach for solving a general topology optimization problem of nonlinear elastic structures. By using finite element method, this most challenging problem can be formulated as a mixed integer nonlinear programming problem (MINLP), i.e. for a given deformation, the first-level optimization is a typical linear constrained 0-1 programming problem, while for a given structure, the second-level optimization is a general nonlinear continuous minimization problem in computational nonlinear elasticity. It is discovered that for linear elastic structures, first-level optimization is a typical Knapsack problem, which is considered to be NP-complete in computer science. However, by using canonical duality theory, this well-known problem can be solved analytically to obtain exact integer solution. A perturbed canonical dual algorithm (CDT) is proposed and illustrated by benchmark problems in topology optimization. Numerical results show that the proposed CDT method produces desired optimal structure without any gray elements. The checkerboard issue in traditional methods is much reduced.

Citations (9)

Summary

We haven't generated a summary for this paper yet.