Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

GSE spectra in uni-directional quantum systems (1811.09860v1)

Published 24 Nov 2018 in math-ph, math.MP, and quant-ph

Abstract: Generically, spectral statistics of spinless systems with time reversal invariance (TRI) and chaotic dynamics are well described by the Gaussian Orthogonal ensemble (GOE). However, if an additional symmetry is present, the spectrum can be split into independent sectors which statistics depend on the type of the group's irreducible representation. In particular, this allows the construction of TRI quantum graphs with spectral statistics characteristic of the Gaussian Symplectic ensembles (GSE). To this end one usually has to use groups admitting pseudo-real irreducible representations. In this paper we show how GSE spectral statistics can be realized in TRI systems with simpler symmetry groups lacking pseudo-real representations. As an application, we provide a class of quantum graphs with only $C_4$ rotational symmetry possessing GSE spectral statistics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube