Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

NExUS: Bayesian simultaneous network estimation across unequal sample sizes (1811.05405v1)

Published 6 Nov 2018 in stat.AP and stat.ME

Abstract: Network-based analyses of high-throughput genomics data provide a holistic, systems-level understanding of various biological mechanisms for a common population. However, when estimating multiple networks across heterogeneous sub-populations, varying sample sizes pose a challenge in the estimation and inference, as network differences may be driven by differences in power. We are particularly interested in addressing this challenge in the context of proteomic networks for related cancers, as the number of subjects available for rare cancer (sub-)types is often limited. We develop NExUS (Network Estimation across Unequal Sample sizes), a Bayesian method that enables joint learning of multiple networks while avoiding artefactual relationship between sample size and network sparsity. We demonstrate through simulations that NExUS outperforms existing network estimation methods in this context, and apply it to learn network similarity and shared pathway activity for groups of cancers with related origins represented in The Cancer Genome Atlas (TCGA) proteomic data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.