Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

State of practice: evaluating GPU performance of state vector and tensor network methods (2401.06188v1)

Published 11 Jan 2024 in quant-ph and cs.DC

Abstract: The frontier of quantum computing (QC) simulation on classical hardware is quickly reaching the hard scalability limits for computational feasibility. Nonetheless, there is still a need to simulate large quantum systems classically, as the Noisy Intermediate Scale Quantum (NISQ) devices are yet to be considered fault tolerant and performant enough in terms of operations per second. Each of the two main exact simulation techniques, state vector and tensor network simulators, boasts specific limitations. The exponential memory requirement of state vector simulation, when compared to the qubit register sizes of currently available quantum computers, quickly saturates the capacity of the top HPC machines currently available. Tensor network contraction approaches, which encode quantum circuits into tensor networks and then contract them over an output bit string to obtain its probability amplitude, still fall short of the inherent complexity of finding an optimal contraction path, which maps to a max-cut problem on a dense mesh, a notably NP-hard problem. This article aims at investigating the limits of current state-of-the-art simulation techniques on a test bench made of eight widely used quantum subroutines, each in 31 different configurations, with special emphasis on performance. We then correlate the performance measures of the simulators with the metrics that characterise the benchmark circuits, identifying the main reasons behind the observed performance trend. From our observations, given the structure of a quantum circuit and the number of qubits, we highlight how to select the best simulation strategy, obtaining a speedup of up to an order of magnitude.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Anonymous. (2023) Data and code repository to be disclosed after the review process.
  2. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1666-5
  3. J. S. Bell, “On the einstein podolsky rosen paradox,” Physics Physique Fizika, vol. 1, pp. 195–200, Nov 1964. [Online]. Available: https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
  4. V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam, G. Alonso-Linaje, B. AkashNarayanan, A. Asadi, J. M. Arrazola, U. Azad, S. Banning, C. Blank, T. R. Bromley, B. A. Cordier, J. Ceroni, A. Delgado, O. D. Matteo, A. Dusko, T. Garg, D. Guala, A. Hayes, R. Hill, A. Ijaz, T. Isacsson, D. Ittah, S. Jahangiri, P. Jain, E. Jiang, A. Khandelwal, K. Kottmann, R. A. Lang, C. Lee, T. Loke, A. Lowe, K. McKiernan, J. J. Meyer, J. A. Montañez-Barrera, R. Moyard, Z. Niu, L. J. O’Riordan, S. Oud, A. Panigrahi, C.-Y. Park, D. Polatajko, N. Quesada, C. Roberts, N. Sá, I. Schoch, B. Shi, S. Shu, S. Sim, A. Singh, I. Strandberg, J. Soni, A. Száva, S. Thabet, R. A. Vargas-Hernández, T. Vincent, N. Vitucci, M. Weber, D. Wierichs, R. Wiersema, M. Willmann, V. Wong, S. Zhang, and N. Killoran, “Pennylane: Automatic differentiation of hybrid quantum-classical computations,” 2022.
  5. E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM Journal on Computing, vol. 26, no. 5, pp. 1411–1473, 1997. [Online]. Available: https://doi.org/10.1137/S0097539796300921
  6. J. Biamonte, “Lectures on quantum tensor networks,” 2020.
  7. J. Biamonte and V. Bergholm, “Tensor networks in a nutshell,” 2017.
  8. B. Coecke and R. Duncan, “Interacting quantum observables: categorical algebra and diagrammatics,” New Journal of Physics, vol. 13, no. 4, p. 043016, apr 2011. [Online]. Available: https://doi.org/10.1088%2F1367-2630%2F13%2F4%2F043016
  9. D. Coppersmith, “An approximate fourier transform useful in quantum factoring,” 2002.
  10. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev., vol. 47, pp. 777–780, May 1935. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRev.47.777
  11. B. Fang, M. Y. Özkaya, A. Li, Ümit V. Çatalyürek, and S. Krishnamoorthy, “Efficient hierarchical state vector simulation of quantum circuits via acyclic graph partitioning,” 2022.
  12. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” 2014.
  13. R. P. Feynman, “Simulating physics with computers,” International journal of theoretical physics, vol. 21, no. 6/7, pp. 467–488, 1982.
  14. M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,” J. ACM, vol. 42, no. 6, p. 1115–1145, nov 1995. [Online]. Available: https://doi.org/10.1145/227683.227684
  15. J. Gray and S. Kourtis, “Hyper-optimized tensor network contraction,” Quantum, vol. 5, p. 410, mar 2021. [Online]. Available: https://doi.org/10.22331%2Fq-2021-03-15-410
  16. L. K. Grover, “A fast quantum mechanical algorithm for database search,” 1996.
  17. J. Ha, J. Lee, and J. Heo, “Resource analysis of quantum computing with noisy qubits for shor’s factoring algorithms,” Quantum Information Processing, vol. 21, no. 2, p. 60, Jan 2022. [Online]. Available: https://doi.org/10.1007/s11128-021-03398-1
  18. T. Hoefler, T. Häner, and M. Troyer, “Disentangling hype from practicality: On realistically achieving quantum advantage,” Commun. ACM, vol. 66, no. 5, p. 82–87, apr 2023. [Online]. Available: https://doi.org/10.1145/3571725
  19. D. Horsman, S. Stepney, R. C. Wagner, and V. Kendon, “When does a physical system compute?” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 470, no. 2169, sep 2014. [Online]. Available: https://doi.org/10.1098%2Frspa.2014.0182
  20. A. Y. Kitaev, “Quantum measurements and the abelian stabilizer problem,” 1995.
  21. I. D. Kivlichan, J. McClean, N. Wiebe, C. Gidney, A. Aspuru-Guzik, G. K.-L. Chan, and R. Babbush, “Quantum simulation of electronic structure with linear depth and connectivity,” Physical Review Letters, vol. 120, no. 11, mar 2018. [Online]. Available: https://doi.org/10.1103%2Fphysrevlett.120.110501
  22. A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, “Qasmbench: A low-level qasm benchmark suite for nisq evaluation and simulation,” 2022.
  23. M. McEwen, L. Faoro, K. Arya, A. Dunsworth, T. Huang, S. Kim, B. Burkett, A. Fowler, F. Arute, J. C. Bardin, A. Bengtsson, A. Bilmes, B. B. Buckley, N. Bushnell, Z. Chen, R. Collins, S. Demura, A. R. Derk, C. Erickson, M. Giustina, S. D. Harrington, S. Hong, E. Jeffrey, J. Kelly, P. V. Klimov, F. Kostritsa, P. Laptev, A. Locharla, X. Mi, K. C. Miao, S. Montazeri, J. Mutus, O. Naaman, M. Neeley, C. Neill, A. Opremcak, C. Quintana, N. Redd, P. Roushan, D. Sank, K. J. Satzinger, V. Shvarts, T. White, Z. J. Yao, P. Yeh, J. Yoo, Y. Chen, V. Smelyanskiy, J. M. Martinis, H. Neven, A. Megrant, L. Ioffe, and R. Barends, “Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits,” Nature Physics, vol. 18, no. 1, pp. 107–111, dec 2021. [Online]. Available: https://doi.org/10.1038%2Fs41567-021-01432-8
  24. E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik, E. W. Draeger, E. T. Holland, and R. Wisnieff, “Pareto-efficient quantum circuit simulation using tensor contraction deferral,” 2020.
  25. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue solver on a photonic quantum processor,” Nat Commun, vol. 5, p. 4213, Jul. 2014.
  26. Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, N. Bartolo, E. Battaner, R. Battye, K. Benabed, A. Benoît, A. Benoit-Lévy, J. P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, A. Bonaldi, L. Bonavera, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R. C. Butler, E. Calabrese, J. F. Cardoso, A. Catalano, A. Challinor, A. Chamballu, R. R. Chary, H. C. Chiang, J. Chluba, P. R. Christensen, S. Church, D. L. Clements, S. Colombi, L. P. L. Colombo, C. Combet, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, J. Delabrouille, F. X. Désert, E. Di Valentino, C. Dickinson, J. M. Diego, K. Dolag, H. Dole, S. Donzelli, O. Doré, M. Douspis, A. Ducout, J. Dunkley, X. Dupac, G. Efstathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, M. Farhang, J. Fergusson, F. Finelli, O. Forni, M. Frailis, A. A. Fraisse, E. Franceschi, A. Frejsel, S. Galeotta, S. Galli, K. Ganga, C. Gauthier, M. Gerbino, T. Ghosh, M. Giard, Y. Giraud-Héraud, E. Giusarma, E. Gjerløw, J. González-Nuevo, K. M. Górski, S. Gratton, A. Gregorio, A. Gruppuso, J. E. Gudmundsson, J. Hamann, F. K. Hansen, D. Hanson, D. L. Harrison, G. Helou, S. Henrot-Versillé, C. Hernández-Monteagudo, D. Herranz, S. R. Hildebrandt, E. Hivon, M. Hobson, W. A. Holmes, A. Hornstrup, W. Hovest, Z. Huang, K. M. Huffenberger, G. Hurier, A. H. Jaffe, T. R. Jaffe, W. C. Jones, M. Juvela, E. Keihänen, R. Keskitalo, T. S. Kisner, R. Kneissl, J. Knoche, L. Knox, M. Kunz, H. Kurki-Suonio, G. Lagache, A. Lähteenmäki, J. M. Lamarre, A. Lasenby, M. Lattanzi, C. R. Lawrence, J. P. Leahy, R. Leonardi, J. Lesgourgues, F. Levrier, A. Lewis, M. Liguori, P. B. Lilje, M. Linden-Vørnle, M. López-Caniego, P. M. Lubin, J. F. Macías-Pérez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, A. Marchini, M. Maris, P. G. Martin, M. Martinelli, E. Martínez-González, S. Masi, S. Matarrese, P. McGehee, P. R. Meinhold, A. Melchiorri, J. B. Melin, L. Mendes, A. Mennella, M. Migliaccio, M. Millea, S. Mitra, M. A. Miville-Deschênes, A. Moneti, L. Montier, G. Morgante, D. Mortlock, A. Moss, D. Munshi, J. A. Murphy, P. Naselsky, F. Nati, P. Natoli, C. B. Netterfield, H. U. Nørgaard-Nielsen, F. Noviello, D. Novikov, I. Novikov, C. A. Oxborrow, F. Paci, L. Pagano, F. Pajot, R. Paladini, D. Paoletti, B. Partridge, F. Pasian, G. Patanchon, T. J. Pearson, O. Perdereau, L. Perotto, F. Perrotta, V. Pettorino, F. Piacentini, M. Piat, E. Pierpaoli, D. Pietrobon, S. Plaszczynski, E. Pointecouteau, G. Polenta, L. Popa, G. W. Pratt, G. Prézeau, S. Prunet, J. L. Puget, J. P. Rachen, W. T. Reach, R. Rebolo, M. Reinecke, M. Remazeilles, C. Renault, A. Renzi, I. Ristorcelli, G. Rocha, C. Rosset, M. Rossetti, G. Roudier, B. Rouillé d’Orfeuil, M. Rowan-Robinson, J. A. Rubiño-Martín, B. Rusholme, N. Said, V. Salvatelli, L. Salvati, M. Sandri, D. Santos, M. Savelainen, G. Savini, D. Scott, M. D. Seiffert, P. Serra, E. P. S. Shellard, L. D. Spencer, M. Spinelli, V. Stolyarov, R. Stompor, R. Sudiwala, R. Sunyaev, D. Sutton, A. S. Suur-Uski, J. F. Sygnet, J. A. Tauber, L. Terenzi, L. Toffolatti, M. Tomasi, M. Tristram, T. Trombetti, M. Tucci, J. Tuovinen, M. Türler, G. Umana, L. Valenziano, J. Valiviita, F. Van Tent, P. Vielva, F. Villa, L. A. Wade, B. D. Wandelt, I. K. Wehus, M. White, S. D. M. White, A. Wilkinson, D. Yvon, A. Zacchei, and A. Zonca, “Planck 2015 results. xiii. cosmological parameters,” Astronomy and Astrophysics, vol. 594, p. A13, Sep. 2016.
  27. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Journal on Computing, vol. 26, no. 5, pp. 1484–1509, oct 1997. [Online]. Available: https://doi.org/10.1137%2Fs0097539795293172
  28. S. Stanwyck, H. Bayraktar, and T. Costa, “cuQuantum: Accelerating Quantum Circuit Simulation on GPUs,” in APS March Meeting Abstracts, ser. APS Meeting Abstracts, vol. 2022, Jan. 2022, p. Q36.002.
  29. Q. A. team and collaborators. (2020, Sep.) qsim. [Online]. Available: https://doi.org/10.5281/zenodo.4023103
  30. T. Tomesh, P. Gokhale, V. Omole, G. S. Ravi, K. N. Smith, J. Viszlai, X.-C. Wu, N. Hardavellas, M. R. Martonosi, and F. T. Chong, “Supermarq: A scalable quantum benchmark suite,” 2022.
  31. Top500, May 2023. [Online]. Available: https://www.top500.org/news/frontier-remains-sole-exaflop-machine-and-retains-top-spot-improving-upon-its-previous-hpl-score/
  32. M. Vallero. (2023, Jul.) Interactive plot for circuit size scaling. [Online]. Available: https://www.desmos.com/calculator/ubmdmkmndv
  33. W. van Dam, S. Hallgren, and L. Ip, “Quantum algorithms for some hidden shift problems,” 2002.
  34. A. P. Vepsäläinen, A. H. Karamlou, J. L. Orrell, A. S. Dogra, B. Loer, F. Vasconcelos, D. K. Kim, A. J. Melville, B. M. Niedzielski, J. L. Yoder, S. Gustavsson, J. A. Formaggio, B. A. VanDevender, and W. D. Oliver, “Impact of ionizing radiation on superconducting qubit coherence,” Nature, vol. 584, no. 7822, pp. 551–556, aug 2020. [Online]. Available: https://doi.org/10.1038%2Fs41586-020-2619-8
  35. G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Physical Review Letters, vol. 91, no. 14, oct 2003. [Online]. Available: https://doi.org/10.1103%2Fphysrevlett.91.147902
  36. C. D. Wilen, S. Abdullah, N. A. Kurinsky, C. Stanford, L. Cardani, G. D’Imperio, C. Tomei, L. Faoro, L. B. Ioffe, C. H. Liu, A. Opremcak, B. G. Christensen, J. L. DuBois, and R. McDermott, “Correlated charge noise and relaxation errors in superconducting qubits,” Nature, vol. 594, no. 7863, pp. 369–373, jun 2021. [Online]. Available: https://doi.org/10.1038%2Fs41586-021-03557-5
  37. X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev, and F. T. Chong, “Full-state quantum circuit simulation by using data compression,” in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC ’19.   New York, NY, USA: Association for Computing Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3295500.3356155
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com