Cusp Universality for Random Matrices II: The Real Symmetric Case (1811.04055v5)
Abstract: We prove that the local eigenvalue statistics of real symmetric Wigner-type matrices near the cusp points of the eigenvalue density are universal. Together with the companion paper [arXiv:1809.03971], which proves the same result for the complex Hermitian symmetry class, this completes the last remaining case of the Wigner-Dyson-Mehta universality conjecture after bulk and edge universalities have been established in the last years. We extend the recent Dyson Brownian motion analysis at the edge [arXiv:1712.03881] to the cusp regime using the optimal local law from [arXiv:1809.03971] and the accurate local shape analysis of the density from [arXiv:1506.05095, arXiv:1804.07752]. We also present a PDE-based method to improve the estimate on eigenvalue rigidity via the maximum principle of the heat flow related to the Dyson Brownian motion.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.