Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutional LSTMs for Cloud-Robust Segmentation of Remote Sensing Imagery (1811.02471v2)

Published 28 Oct 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Clouds frequently cover the Earth's surface and pose an omnipresent challenge to optical Earth observation methods. The vast majority of remote sensing approaches either selectively choose single cloud-free observations or employ a pre-classification strategy to identify and mask cloudy pixels. We follow a different strategy and treat cloud coverage as noise that is inherent to the observed satellite data. In prior work, we directly employed a straightforward \emph{convolutional long short-term memory} network for vegetation classification without explicit cloud filtering and achieved state-of-the-art classification accuracies. In this work, we investigate this cloud-robustness further by visualizing internal cell activations and performing an ablation experiment on datasets of different cloud coverage. In the visualizations of network states, we identified some cells in which modulation and input gates closed on cloudy pixels. This indicates that the network has internalized a cloud-filtering mechanism without being specifically trained on cloud labels. Overall, our results question the necessity of sophisticated pre-processing pipelines for multi-temporal deep learning approaches.

Citations (36)

Summary

We haven't generated a summary for this paper yet.