Creating and Leveraging a Synthetic Dataset of Cloud Optical Thickness Measures for Cloud Detection in MSI (2311.14024v3)
Abstract: Cloud formations often obscure optical satellite-based monitoring of the Earth's surface, thus limiting Earth observation (EO) activities such as land cover mapping, ocean color analysis, and cropland monitoring. The integration of ML methods within the remote sensing domain has significantly improved performance on a wide range of EO tasks, including cloud detection and filtering, but there is still much room for improvement. A key bottleneck is that ML methods typically depend on large amounts of annotated data for training, which is often difficult to come by in EO contexts. This is especially true when it comes to cloud optical thickness (COT) estimation. A reliable estimation of COT enables more fine-grained and application-dependent control compared to using pre-specified cloud categories, as is commonly done in practice. To alleviate the COT data scarcity problem, in this work we propose a novel synthetic dataset for COT estimation, that we subsequently leverage for obtaining reliable and versatile cloud masks on real data. In our dataset, top-of-atmosphere radiances have been simulated for 12 of the spectral bands of the Multispectral Imagery (MSI) sensor onboard Sentinel-2 platforms. These data points have been simulated under consideration of different cloud types, COTs, and ground surface and atmospheric profiles. Extensive experimentation of training several ML models to predict COT from the measured reflectivity of the spectral bands demonstrates the usefulness of our proposed dataset. In particular, by thresholding COT estimates from our ML models, we show on two satellite image datasets (one that is publicly available, and one which we have collected and annotated) that reliable cloud masks can be obtained. The synthetic data, the collected real dataset, code and models have been made publicly available at https://github.com/aleksispi/ml-cloud-opt-thick.
- Burnt forest estimation from sentinel-2 imagery of australia using unsupervised deep learning. In 2021 Digital Image Computing: Techniques and Applications (DICTA), pages 01–08. IEEE, 2021a. 10.1109/DICTA52665.2021.9647174.
- Ucl: Unsupervised curriculum learning for water body classification from remote sensing imagery. International Journal of Applied Earth Observation and Geoinformation, 105:102568, 2021b. 10.1016/j.jag.2021.102568.
- The aster spectral library version 2.0. Remote Sensing of Environment, 113(4):711–715, 2009. ISSN 0034-4257. https://doi.org/10.1016/j.rse.2008.11.007. URL https://www.sciencedirect.com/science/article/pii/S0034425708003441.
- Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. Journal of Applied Meteorology and Climatology, 50(5):1037 – 1056, 2011. https://doi.org/10.1175/2010JAMC2608.1. URL https://journals.ametsoc.org/view/journals/apme/50/5/2010jamc2608.1.xml.
- Retrieval of oceanic chlorophyll concentration with relevance vector machines. Remote Sensing of Environment, 105(1):23–33, 2006. 10.1016/j.rse.2006.06.004.
- Diverse Profile Datasets from the ECMWF 91-level Short-range Forecasts. European Centre for Medium-Range Weather Forecasts, 2006.
- Kappamask: Ai-based cloudmask processor for sentinel-2. Remote Sensing, 13(20):4100, 2021. 10.3390/rs13204100.
- Urban monitoring using multi-temporal sar and multi-spectral data. Pattern Recognition Letters, 27(4):234–243, 2006. 10.1016/j.patrec.2005.08.004.
- Cloud-screening algorithm for envisat/meris multispectral images. IEEE Transactions on Geoscience and Remote Sensing, 45(12):4105–4118, 2007. 10.1109/TGRS.2007.905312.
- Neural network cloud top pressure and height for modis. Atmospheric Measurement Techniques, 11(5):3177–3196, 2018. 10.5194/amt-11-3177-2018. URL https://amt.copernicus.org/articles/11/3177/2018/.
- Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. 10.1109/CVPR.2016.90.
- Optical properties of aerosols and clouds: The software package opac. Bulletin of the American Meteorological Society, 79(5):831–844, 1998. 10.1175/1520-0477(1998)079¡0831:OPOAAC¿2.0.CO;2. URL https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.
- H. Iwabuchi and T. Hayasaka. Effects of cloud horizontal inhomogeneity on the optical thickness retrieved from moderate-resolution satellite data. Journal of the atmospheric sciences, 59(14):2227–2242, 2002. 10.1175/1520-0469(2002)059¡2227:EOCHIO¿2.0.CO;2.
- A cloud detection algorithm for satellite imagery based on deep learning. Remote sensing of environment, 229:247–259, 2019. 10.1016/j.rse.2019.03.039.
- Cloudx-net: A robust encoder-decoder architecture for cloud detection from satellite remote sensing images. Remote Sensing Applications: Society and Environment, 20:100417, 2020. 10.1016/j.rsase.2020.100417.
- D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- S. J. Koppal. Lambertian Reflectance, pages 441–443. Springer US, Boston, MA, 2014. ISBN 978-0-387-31439-6. 10.1007/978-0-387-31439-6_534. URL https://doi.org/10.1007/978-0-387-31439-6_534.
- Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 2012.
- D. Liu. Inferring optical depth of broken clouds from landsat data. J. Climate, 8:2620–2630, 1995. 10.1175/1520-0442(1995)008¡2620:IODOBC¿2.0.CO;2.
- Sentinel-2 sen2cor: L2a processor for users. In Proceedings living planet symposium 2016, pages 1–8. Spacebooks Online, 2016.
- Flood detection on low cost orbital hardware. arXiv preprint arXiv:1910.03019, 2019.
- Transferring deep learning models for cloud detection between landsat-8 and proba-v. ISPRS Journal of Photogrammetry and Remote Sensing, 160:1–17, 2020. 10.1016/j.isprsjprs.2019.11.024.
- The ecostress spectral library version 1.0. Remote Sensing of Environment, 230:111196, 2019. ISSN 0034-4257. https://doi.org/10.1016/j.rse.2019.05.015. URL https://www.sciencedirect.com/science/article/pii/S0034425719302081.
- Retrieval of optical thickness and droplet effective radius of inhomogeneous clouds using deep learning. Atmos. Meas. Tech., 10:4747–4759, 2017. 10.5194/amt-2017-154.
- Advances in understanding clouds from isccp. Bull. Amer. Meteorol. Soc., 80:2261–2288, 1999. 10.1175/1520-0477(1999)080 Saunders et al. [2018] R. Saunders, J. Hocking, E. Turner, P. Rayer, D. Rundle, P. Brunel, J. Vidot, P. Roquet, M. Matricardi, A. Geer, et al. An update on the rttov fast radiative transfer model¡? xmltex\\\backslash\break?¿(currently at version 12). Geoscientific Model Development, 11(7):2717–2737, 2018. 10.5194/gmd-11-2717-2018. Scheirer and Macke [2001] R. Scheirer and A. Macke. On the accuracy of the independent column approximation in calculating the downward fluxes in the uva, uvb, and par spectral ranges. Journal of Geophysical Research: Atmospheres, 106(D13):14301–14312, 2001. ISSN 2156-2202. 10.1029/2001JD900130. URL http://dx.doi.org/10.1029/2001JD900130. Sde-Chen et al. [2021] Y. Sde-Chen, Y. Y. Schechner, V. Holodovsky, and E. Eytan. 3DeepCT: Learning volumetric scattering tomography of clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5671–5682, 2021. Segelstein [1981] D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. R. Saunders, J. Hocking, E. Turner, P. Rayer, D. Rundle, P. Brunel, J. Vidot, P. Roquet, M. Matricardi, A. Geer, et al. An update on the rttov fast radiative transfer model¡? xmltex\\\backslash\break?¿(currently at version 12). Geoscientific Model Development, 11(7):2717–2737, 2018. 10.5194/gmd-11-2717-2018. Scheirer and Macke [2001] R. Scheirer and A. Macke. On the accuracy of the independent column approximation in calculating the downward fluxes in the uva, uvb, and par spectral ranges. Journal of Geophysical Research: Atmospheres, 106(D13):14301–14312, 2001. ISSN 2156-2202. 10.1029/2001JD900130. URL http://dx.doi.org/10.1029/2001JD900130. Sde-Chen et al. [2021] Y. Sde-Chen, Y. Y. Schechner, V. Holodovsky, and E. Eytan. 3DeepCT: Learning volumetric scattering tomography of clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5671–5682, 2021. Segelstein [1981] D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. R. Scheirer and A. Macke. On the accuracy of the independent column approximation in calculating the downward fluxes in the uva, uvb, and par spectral ranges. Journal of Geophysical Research: Atmospheres, 106(D13):14301–14312, 2001. ISSN 2156-2202. 10.1029/2001JD900130. URL http://dx.doi.org/10.1029/2001JD900130. Sde-Chen et al. [2021] Y. Sde-Chen, Y. Y. Schechner, V. Holodovsky, and E. Eytan. 3DeepCT: Learning volumetric scattering tomography of clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5671–5682, 2021. Segelstein [1981] D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. Y. Sde-Chen, Y. Y. Schechner, V. Holodovsky, and E. Eytan. 3DeepCT: Learning volumetric scattering tomography of clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5671–5682, 2021. Segelstein [1981] D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010.
- An update on the rttov fast radiative transfer model¡? xmltex\\\backslash\break?¿(currently at version 12). Geoscientific Model Development, 11(7):2717–2737, 2018. 10.5194/gmd-11-2717-2018. Scheirer and Macke [2001] R. Scheirer and A. Macke. On the accuracy of the independent column approximation in calculating the downward fluxes in the uva, uvb, and par spectral ranges. Journal of Geophysical Research: Atmospheres, 106(D13):14301–14312, 2001. ISSN 2156-2202. 10.1029/2001JD900130. URL http://dx.doi.org/10.1029/2001JD900130. Sde-Chen et al. [2021] Y. Sde-Chen, Y. Y. Schechner, V. Holodovsky, and E. Eytan. 3DeepCT: Learning volumetric scattering tomography of clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5671–5682, 2021. Segelstein [1981] D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. R. Scheirer and A. Macke. On the accuracy of the independent column approximation in calculating the downward fluxes in the uva, uvb, and par spectral ranges. Journal of Geophysical Research: Atmospheres, 106(D13):14301–14312, 2001. ISSN 2156-2202. 10.1029/2001JD900130. URL http://dx.doi.org/10.1029/2001JD900130. Sde-Chen et al. [2021] Y. Sde-Chen, Y. Y. Schechner, V. Holodovsky, and E. Eytan. 3DeepCT: Learning volumetric scattering tomography of clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5671–5682, 2021. Segelstein [1981] D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. Y. Sde-Chen, Y. Y. Schechner, V. Holodovsky, and E. Eytan. 3DeepCT: Learning volumetric scattering tomography of clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5671–5682, 2021. Segelstein [1981] D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010.
- R. Scheirer and A. Macke. On the accuracy of the independent column approximation in calculating the downward fluxes in the uva, uvb, and par spectral ranges. Journal of Geophysical Research: Atmospheres, 106(D13):14301–14312, 2001. ISSN 2156-2202. 10.1029/2001JD900130. URL http://dx.doi.org/10.1029/2001JD900130. Sde-Chen et al. [2021] Y. Sde-Chen, Y. Y. Schechner, V. Holodovsky, and E. Eytan. 3DeepCT: Learning volumetric scattering tomography of clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5671–5682, 2021. Segelstein [1981] D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. Y. Sde-Chen, Y. Y. Schechner, V. Holodovsky, and E. Eytan. 3DeepCT: Learning volumetric scattering tomography of clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5671–5682, 2021. Segelstein [1981] D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010.
- 3DeepCT: Learning volumetric scattering tomography of clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5671–5682, 2021. Segelstein [1981] D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010.
- D. Segelstein. The Complex Refractive Index of Water. Department of Physics. University of Missouri-Kansas City, 1981. URL https://books.google.se/books?id=S1q0NwAACAAJ. Wada [2017] K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010.
- K. Wada. pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. https://github.com/wkentaro/pytorch-fcn, 2017. Wolanin et al. [2020] A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. A. Wolanin, G. Mateo-García, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G. Duveiller, Y. Liangzhi, and L. Guanter. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010.
- Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental research letters, 15(2):024019, 2020. 10.1088/1748-9326/ab68ac. Zhang et al. [2020] J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. J. Zhang, X. Li, L. Li, P. Sun, X. Su, T. Hu, and F. Chen. Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010.
- Lightweight u-net for cloud detection of visible and thermal infrared remote sensing images. Optical and Quantum Electronics, 52:1–14, 2020. 10.1007/s11082-020-02500-8. Zhu et al. [2015] Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. Z. Zhu, S. Wang, and C. E. Woodcock. Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010.
- Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote sensing of Environment, 159:269–277, 2015. 10.1016/j.rse.2014.12.014. Zinner and Mayer [2006] T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010.
- T. Zinner and B. Mayer. Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. Journal of Geophysical Research: Atmospheres, 111(D14), 2006. 10.1029/2005JD006955. Zinner et al. [2010] T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010. T. Zinner, G. Wind, S. Platnick, and A. S. Ackerman. Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010.
- Testing remote sensing on artificial observations: Impact of drizzle and 3-d cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10:9535–9549, 2010. 10.5194/acp-10-9535-2010.
- Aleksis Pirinen (10 papers)
- Nosheen Abid (6 papers)
- Nuria Agues Paszkowsky (1 paper)
- Thomas Ohlson Timoudas (6 papers)
- Ronald Scheirer (1 paper)
- Chiara Ceccobello (17 papers)
- György Kovács (13 papers)
- Anders Persson (5 papers)