Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reinforcement learning-based waveform optimization for MIMO multi-target detection (1811.02359v1)

Published 6 Nov 2018 in eess.SP

Abstract: A cognitive beamforming algorithm for colocated MIMO radars, based on Reinforcement Learning (RL) framework, is proposed. We analyse an RL-based optimization protocol that allows the MIMO radar, i.e. the \textit{agent}, to iteratively sense the unknown environment, i.e. the radar scene involving an unknown number of targets at unknown angular positions, and consequently, to synthesize a set of transmitted waveforms whose related beam patter is tailored on the acquired knowledge. The performance of the proposed RL-based beamforming algorithm is assessed through numerical simulations in terms of Probability of Detection ($P_D$).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube