Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Integration for Supporting Biomedical Knowledge Graph Creation at Large-Scale (1811.01660v1)

Published 5 Nov 2018 in cs.DB

Abstract: In recent years, following FAIR and open data principles, the number of available big data including biomedical data has been increased exponentially. In order to extract knowledge, these data should be curated, integrated, and semantically described. Accordingly, several semantic integration techniques have been developed; albeit effective, they may suffer from scalability in terms of different properties of big data. Even scaled-up approaches may be highly costly because tasks of semantification, curation and integration are performed independently. In order to overcome these issues, we devise ConMap, a semantic integration approach which exploits knowledge encoded in ontology in order to describe mapping rules to perform these tasks at the same time. Experimental results performed on different data sets suggest that ConMap can significantly reduce the time required for knowledge graph creation by up to 70\% of the time that is consumed following a traditional approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.