Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Black-Box Attacks on Automatic Speech Recognition Systems using Multi-Objective Evolutionary Optimization (1811.01312v2)

Published 4 Nov 2018 in cs.CR, cs.LG, and cs.NE

Abstract: Fooling deep neural networks with adversarial input have exposed a significant vulnerability in the current state-of-the-art systems in multiple domains. Both black-box and white-box approaches have been used to either replicate the model itself or to craft examples which cause the model to fail. In this work, we propose a framework which uses multi-objective evolutionary optimization to perform both targeted and un-targeted black-box attacks on Automatic Speech Recognition (ASR) systems. We apply this framework on two ASR systems: Deepspeech and Kaldi-ASR, which increases the Word Error Rates (WER) of these systems by upto 980%, indicating the potency of our approach. During both un-targeted and targeted attacks, the adversarial samples maintain a high acoustic similarity of 0.98 and 0.97 with the original audio.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shreya Khare (11 papers)
  2. Rahul Aralikatte (24 papers)
  3. Senthil Mani (16 papers)
Citations (14)