Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Research Issues in Mining User Behavioral Rules for Context-Aware Intelligent Mobile Applications (1810.12692v1)

Published 30 Oct 2018 in cs.LG and stat.ML

Abstract: Context-awareness in smart mobile applications is a growing area of study, because of it's intelligence in the applications. In order to build context-aware intelligent applications, mining contextual behavioral rules of individual smartphone users utilizing their phone log data is the key. However, to mine these rules, a number of issues, such as the quality of smartphone data, understanding the relevancy of contexts, discretization of continuous contextual data, discovery of useful behavioral rules of individuals and their ordering, knowledge-based interactive post-mining for semantic understanding, and dynamic updating and management of rules according to their present behavior, are investigated. In this paper, we briefly discuss these issues and their potential solution directions for mining individuals' behavioral rules, for the purpose of building various context-aware intelligent mobile applications. We also summarize a number of real-life rule-based applications that intelligently assist individual smartphone users according to their behavioral rules in their daily activities.

Citations (11)

Summary

We haven't generated a summary for this paper yet.