Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Time correlation functions of equilibrium and nonequilibrium Langevin dynamics: Derivations and numerics using random numbers (1810.12650v2)

Published 30 Oct 2018 in physics.comp-ph

Abstract: We study the time correlation functions of coupled linear Langevin dynamics without and with inertia effects, both analytically and numerically. The model equation represents the physical behavior of a harmonic oscillator in two or three dimensions in the presence of friction, noise, and an external field with both rotational and deformational components. This simple model plays pivotal roles in understanding more complicated processes. The presented analytical solution serves as a test of numerical integration schemes, its derivation is presented in a fashion that allows to be repeated directly in a classroom. While the results in the absence of fields (equilibrium) or confinement (free particle) are omnipresent in the literature, we write down, apparently for the first time, the full nonequilibrium results that may correspond, e.g., to a Hookean dumbbell embedded in a macroscopically homogeneous shear or mixed flow field. We demonstrate how the inertia results reduce to their noninertia counterparts in the nontrivial limit of vanishing mass. While the results are derived using basic integrations over Dirac delta distributions, we mention its relationship with alternative approaches involving (i) Fourier transforms, that seems advantageous only if the measured quantities also reside in Fourier space, and (ii) a Fokker--Planck equation and the moments of the probability distribution. The results, verified by numerical experiments, provide additional means of measuring the performance of numerical methods for such systems. It should be emphasized that this manuscript provides specific details regarding the derivations of the time correlation functions as well as the implementations of various numerical methods, so that it can serve as a standalone piece as part of education in the framework of stochastic differential equations and calculus.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.