Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Non-commutative NLS-type hierarchies: dressing & solutions (1810.10937v3)

Published 25 Oct 2018 in math-ph, hep-th, math.MP, and nlin.SI

Abstract: We consider the generalized matrix non-linear Schrodinger (NLS) hierarchy. By employing the universal Darboux-dressing scheme we derive solutions for the hierarchy of integrable PDEs via solutions of the matrix Gelfand-Levitan-Marchenko equation, and we also identify recursion relations that yield the Lax pairs for the whole matrix NLS-type hierarchy. These results are obtained considering either matrix-integral or general $n{th}$ order matrix-differential operators as Darboux-dressing transformations. In this framework special links with the Airy and Burgers equations are also discussed. The matrix version of the Darboux transform is also examined leading to the non-commutative version of the Riccati equation. The non-commutative Riccati equation is solved and hence suitable conserved quantities are derived. In this context we also discuss the infinite dimensional case of the NLS matrix model as it provides a suitable candidate for a quantum version of the usual NLS model. Similarly, the non-commutitave Riccati equation for the general dressing transform is derived and it is naturally equivalent to the one emerging from the solution of the auxiliary linear problem.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.