2000 character limit reached
An uncertainty principle for solutions of the Schr{ö}dinger equation on H-type groups (1810.10212v1)
Published 24 Oct 2018 in math.CA, math.CV, and math.FA
Abstract: In this paper we consider uncertainty principles for solutions of certain PDEs on H-type groups. We first prove that, contrary to the euclidean setting, the heat kernel on H-type groups is not characterized as the only solution of the heat equation that has sharp decay at 2 different times. We then prove the analogue of Hardy's Uncertainty Principle for solutions of the Schr{\"o}dinger equation with potential on H-type groups. This extends the free case considered by Ben Sa\"id, Dogga and Thangavelu [BTD] and by Ludwig and M{\"u}ller [LM].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.