Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A proof of the Shepp-Olkin entropy monotonicity conjecture (1810.09791v1)

Published 23 Oct 2018 in math.PR, cs.IT, and math.IT

Abstract: Consider tossing a collection of coins, each fair or biased towards heads, and take the distribution of the total number of heads that result. It is natural to conjecture that this distribution should be 'more random' when each coin is fairer. Indeed, Shepp and Olkin conjectured that the Shannon entropy of this distribution is monotonically increasing in this case. We resolve this conjecture, by proving that this intuition is correct. Our proof uses a construction which was previously developed by the authors to prove a related conjecture of Shepp and Olkin concerning concavity of entropy. We discuss whether this result can be generalized to $q$-R\'{e}nyi and $q$-Tsallis entropies, for a range of values of $q$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.