Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A proof of the Shepp-Olkin entropy concavity conjecture (1503.01570v1)

Published 5 Mar 2015 in math.PR, cs.IT, and math.IT

Abstract: We prove the Shepp--Olkin conjecture, which states that the entropy of the sum of independent Bernoulli random variables is concave in the parameters of the individual random variables. Our proof is a refinement of an argument previously presented by the same authors, which resolved the conjecture in the monotonic case (where all the parameters are simultaneously increasing). In fact, we show that the monotonic case is the worst case, using a careful analysis of concavity properties of the derivatives of the probability mass function. We propose a generalization of Shepp and Olkin's original conjecture, to consider Renyi and Tsallis entropies.

Citations (22)

Summary

We haven't generated a summary for this paper yet.