Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Learning sparse transformations through backpropagation (1810.09184v1)

Published 22 Oct 2018 in stat.ML and cs.LG

Abstract: Many transformations in deep learning architectures are sparsely connected. When such transformations cannot be designed by hand, they can be learned, even through plain backpropagation, for instance in attention mechanisms. However, during learning, such sparse structures are often represented in a dense form, as we do not know beforehand which elements will eventually become non-zero. We introduce the adaptive, sparse hyperlayer, a method for learning a sparse transformation, paramatrized sparsely: as index-tuples with associated values. To overcome the lack of gradients from such a discrete structure, we introduce a method of randomly sampling connections, and backpropagating over the randomly wired computation graph. To show that this approach allows us to train a model to competitive performance on real data, we use it to build two architectures. First, an attention mechanism for visual classification. Second, we implement a method for differentiable sorting: specifically, learning to sort unlabeled MNIST digits, given only the correct order.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)