Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lesion Focused Super-Resolution (1810.06693v1)

Published 15 Oct 2018 in eess.IV, cs.CV, and physics.med-ph

Abstract: Super-resolution (SR) for image enhancement has great importance in medical image applications. Broadly speaking, there are two types of SR, one requires multiple low resolution (LR) images from different views of the same object to be reconstructed to the high resolution (HR) output, and the other one relies on the learning from a large amount of training datasets, i.e., LR-HR pairs. In real clinical environment, acquiring images from multi-views is expensive and sometimes infeasible. In this paper, we present a novel Generative Adversarial Networks (GAN) based learning framework to achieve SR from its LR version. By performing simulation based studies on the Multimodal Brain Tumor Segmentation Challenge (BraTS) datasets, we demonstrate the efficacy of our method in application of brain tumor MRI enhancement. Compared to bilinear interpolation and other state-of-the-art SR methods, our model is lesion focused, which is not only resulted in better perceptual image quality without blurring, but also more efficient and directly benefit for the following clinical tasks, e.g., lesion detection and abnormality enhancement. Therefore, we can envisage the application of our SR method to boost image spatial resolution while maintaining crucial diagnostic information for further clinical tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jin Zhu (35 papers)
  2. Guang Yang (422 papers)
  3. Pietro Lio (69 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.