Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Classification of full exceptional collections of line bundles on three blow-ups of $\mathbb{P}^{3}$ (1810.06367v1)

Published 15 Oct 2018 in math.AG

Abstract: A fullness conjecture of Kuznetsov says that if a smooth projective variety $X$ admits a full exceptional collection of line bundles of length $l$, then any exceptional collection of line bundles of length $l$ is full. In this paper, we show that this conjecture holds for $X$ as the blow-up of $\mathbb{P}{3}$ at a point, a line, or a twisted cubic curve, i.e. any exceptional collection of line bundles of length 6 on $X$ is full. Moreover, we obtain an explicit classification of full exceptional collections of line bundles on such $X$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.