Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empowerment-driven Exploration using Mutual Information Estimation (1810.05533v1)

Published 11 Oct 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Exploration is a difficult challenge in reinforcement learning and is of prime importance in sparse reward environments. However, many of the state of the art deep reinforcement learning algorithms, that rely on epsilon-greedy, fail on these environments. In such cases, empowerment can serve as an intrinsic reward signal to enable the agent to maximize the influence it has over the near future. We formulate empowerment as the channel capacity between states and actions and is calculated by estimating the mutual information between the actions and the following states. The mutual information is estimated using Mutual Information Neural Estimator and a forward dynamics model. We demonstrate that an empowerment driven agent is able to improve significantly the score of a baseline DQN agent on the game of Montezuma's Revenge.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com