Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Novel Cascaded Gaussian Mixture Model-Deep Neural Network Classifier for Speaker Identification in Emotional Talking Environments (1810.04908v1)

Published 11 Oct 2018 in cs.SD

Abstract: This research is an effort to present an effective approach to enhance text-independent speaker identification performance in emotional talking environments based on novel classifier called cascaded Gaussian Mixture Model-Deep Neural Network (GMM-DNN). Our current work focuses on proposing, implementing and evaluating a new approach for speaker identification in emotional talking environments based on cascaded Gaussian Mixture Model-Deep Neural Network as a classifier. The results point out that the cascaded GMM-DNN classifier improves speaker identification performance at various emotions using two distinct speech databases: Emirati speech database (Arabic United Arab Emirates dataset) and Speech Under Simulated and Actual Stress (SUSAS) English dataset. The proposed classifier outperforms classical classifiers such as Multilayer Perceptron (MLP) and Support Vector Machine (SVM) in each dataset. Speaker identification performance that has been attained based on the cascaded GMM-DNN is similar to that acquired from subjective assessment by human listeners.

Citations (46)

Summary

We haven't generated a summary for this paper yet.