Resolvent Trace Asymptotics on Stratified Spaces (1810.04204v1)
Abstract: Let $(M,g)$ be a compact smoothly stratified pseudomanifold with an iterated cone-edge metric satisfying a spectral Witt condition. Under these assumptions the Hodge-Laplacian $\Delta$ is essentially self-adjoint. We establish the asymptotic expansion for the resolvent trace of $\Delta$. Our method proceeds by induction on the depth and applies in principle to a larger class of second-order differential operators of regular-singular type, e.g., Dirac Laplacians. Our arguments are functional analytic, do not rely on microlocal techniques and are very explicit. The results of this paper provide a basis for studying index theory and spectral invariants in the setting of smoothly stratified spaces and in particular allow for the definition of zeta-determinants and analytic torsion in this general setup.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.