Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics Guided Recurrent Neural Networks For Modeling Dynamical Systems: Application to Monitoring Water Temperature And Quality In Lakes (1810.02880v1)

Published 5 Oct 2018 in cs.LG and stat.ML

Abstract: In this paper, we introduce a novel framework for combining scientific knowledge within physics-based models and recurrent neural networks to advance scientific discovery in many dynamical systems. We will first describe the use of outputs from physics-based models in learning a hybrid-physics-data model. Then, we further incorporate physical knowledge in real-world dynamical systems as additional constraints for training recurrent neural networks. We will apply this approach on modeling lake temperature and quality where we take into account the physical constraints along both the depth dimension and time dimension. By using scientific knowledge to guide the construction and learning the data-driven model, we demonstrate that this method can achieve better prediction accuracy as well as scientific consistency of results.

Citations (35)

Summary

We haven't generated a summary for this paper yet.