Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature Prioritization and Regularization Improve Standard Accuracy and Adversarial Robustness (1810.02424v3)

Published 4 Oct 2018 in cs.LG and stat.ML

Abstract: Adversarial training has been successfully applied to build robust models at a certain cost. While the robustness of a model increases, the standard classification accuracy declines. This phenomenon is suggested to be an inherent trade-off. We propose a model that employs feature prioritization by a nonlinear attention module and $L_2$ feature regularization to improve the adversarial robustness and the standard accuracy relative to adversarial training. The attention module encourages the model to rely heavily on robust features by assigning larger weights to them while suppressing non-robust features. The regularizer encourages the model to extract similar features for the natural and adversarial images, effectively ignoring the added perturbation. In addition to evaluating the robustness of our model, we provide justification for the attention module and propose a novel experimental strategy that quantitatively demonstrates that our model is almost ideally aligned with salient data characteristics. Additional experimental results illustrate the power of our model relative to the state of the art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chihuang Liu (3 papers)
  2. Joseph JaJa (8 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.