2000 character limit reached
Leave-one-out least squares Monte Carlo algorithm for pricing Bermudan options (1810.02071v4)
Published 4 Oct 2018 in q-fin.CP, q-fin.MF, and stat.ML
Abstract: The least squares Monte Carlo (LSM) algorithm proposed by Longstaff and Schwartz (2001) is widely used for pricing Bermudan options. The LSM estimator contains undesirable look-ahead bias, and the conventional technique of avoiding it requires additional simulation paths. We present the leave-one-out LSM (LOOLSM) algorithm to eliminate look-ahead bias without doubling simulations. We also show that look-ahead bias is asymptotically proportional to the regressors-to-paths ratio. Our findings are demonstrated with several option examples in which the LSM algorithm overvalues the options. The LOOLSM method can be extended to other regression-based algorithms that improve the LSM method.
- Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options. Management Science 50, 1222–1234. doi:10.1287/mnsc.1040.0258.
- Regression-based algorithms for life insurance contracts with surrender guarantees. Quantitative Finance 10, 1077–1090. doi:10.1080/14697680902960242.
- Pricing Bermudan options by nonparametric regression: Optimal rates of convergence for lower estimates. Finance and Stochastics 15, 655–683. doi:10.1007/s00780-010-0132-x.
- Practical policy iteration: Generic methods for obtaining rapid and tight bounds for Bermudan exotic derivatives using Monte Carlo simulation. Journal of Economic Dynamics and Control 37, 1342–1361. doi:10.1016/j.jedc.2013.03.004.
- A Lattice Framework for Option Pricing with Two State Variables. The Journal of Financial and Quantitative Analysis 23, 1–12. doi:10.2307/2331019.
- Numerical evaluation of multivariate contingent claims. Review of Financial Studies 2, 241–250.
- The Market Model of Interest Rate Dynamics. Mathematical Finance 7, 127–155. doi:10.1111/1467-9965.00028.
- The Valuation of American Put Options. The Journal of Finance 32, 449–462. doi:10.2307/2326779.
- Pricing American-style securities using simulation. Journal of Economic Dynamics and Control 21, 1323–1352. doi:10.1016/S0165-1889(97)00029-8.
- A stochastic mesh method for pricing high-dimensional American options. Journal of Computational Finance 7, 35–72. doi:10.21314/JCF.2004.117.
- Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance: Mathematics and Economics 19, 19–30. doi:10.1016/S0167-6687(96)00004-2.
- Simulation-based Value-at-Risk for nonlinear portfolios. Quantitative Finance 19, 1639–1658. doi:10.1080/14697688.2019.1598568.
- Sum of all Black-Scholes-Merton models: An efficient pricing method for spread, basket, and Asian options. Journal of Futures Markets 38, 627–644. doi:10.1002/fut.21909, arXiv:1805.03172.
- An analysis of a least squares regression method for American option pricing. Finance and Stochastics 6, 449–471. doi:10.1007/s007800200071.
- Option pricing: A simplified approach. Journal of Financial Economics 7, 229–263. doi:10.1016/0304-405X(79)90015-1.
- An improved least squares Monte Carlo valuation method based on heteroscedasticity. European Journal of Operational Research 263, 698–706. doi:10.1016/j.ejor.2017.05.048.
- Foresight Bias and Suboptimality Correction in Monte-Carlo Pricing of Options with Early Exercise: Classification, Calculation and Removal. Available at SSRN URL: http://christian-fries.de/finmath/foresightbias/.
- Foresight Bias and Suboptimality Correction in Monte-Carlo Pricing of Options with Early Exercise, in: Bonilla, L.L., Moscoso, M., Platero, G., Vega, J.M. (Eds.), Progress in Industrial Mathematics at ECMI 2006. 2008 edition ed., pp. 645–649. doi:10.1007/978-3-540-71992-2_107.
- Pricing American options: A comparison of Monte Carlo simulation approaches. Journal of Computational Finance 4, 39–88. doi:10.21314/JCF.2001.066.
- Chapter 8. Pricing American Options, in: Monte Carlo Methods in Financial Engineering. 2003 edition ed.. Springer, New York, pp. 421–478.
- Number of paths versus number of basis functions in American option pricing. The Annals of Applied Probability 14, 2090–2119. doi:10.1214/105051604000000846.
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. 2nd edition ed., New York, NY. URL: https://hastie.su.domains/ElemStatLearn/.
- Pricing American Options: A Duality Approach. Operations Research 52, 258–270. doi:10.1287/opre.1030.0070.
- Convergence from Discrete- to Continuous-Time Contingent Claims Prices. The Review of Financial Studies 3, 523–546.
- Regression-based Monte Carlo methods for stochastic control models: Variable annuities with lifelong guarantees. Quantitative Finance 16, 905–928. doi:10.1080/14697688.2015.1088962.
- Drift Approximations in a Forward-Rate-Based LIBOR Market Model. Risk , 10.
- The optimal method for pricing Bermudan options by simulation. Mathematical Finance 28, 1143–1180. doi:10.1111/mafi.12158.
- LIBOR and swap market models and measures. Finance and Stochastics 1, 293–330. doi:10.1007/s007800050026.
- Effective sub-simulation-free upper bounds for the Monte Carlo pricing of callable derivatives and various improvements to existing methodologies. Journal of Economic Dynamics and Control 40, 25–45. doi:10.1016/j.jedc.2013.12.001.
- A displaced-diffusion stochastic volatility LIBOR market model: Motivation, definition and implementation. Quantitative Finance 3, 458–469. doi:10.1088/1469-7688/3/6/305.
- Iterative construction of the optimal Bermudan stopping time. Finance and Stochastics 10, 27–49. doi:10.1007/s00780-005-0168-5.
- An analysis of pricing methods for basket options. Wilmott Magazine 2004, 82–89.
- Refining the least squares Monte Carlo method by imposing structure. Quantitative Finance 14, 495–507. doi:10.1080/14697688.2013.787543.
- Valuing American Options by Simulation: A Simple Least-Squares Approach. The Review of Financial Studies 14, 113–147. doi:10.1093/rfs/14.1.113.
- Kriging metamodels and experimental design for Bermudan option pricing. Journal of Computational Finance 22, 37–77. doi:10.21314/JCF.2018.347.
- On the bounds for diagonal and off-diagonal elements of the hat matrix in the linear regression model. Revstat–Statistical Journal 14, 75–87.
- Comparison of least squares Monte Carlo methods with applications to energy real options. European Journal of Operational Research 256, 196–204. doi:10.1016/j.ejor.2016.06.020.
- A Practitioner’s Guide to Pricing and Hedging Callable Libor Exotics in Forward Libor Models. SSRN Electronic Journal doi:10.2139/ssrn.427084.
- Somewhere Over the Rainbow. Risk 1991, 63–66.
- Convergence of the Least Squares Monte Carlo Approach to American Option Valuation. Management Science 50, 1193–1203. doi:10.1287/mnsc.1030.0155.
- Value function approximation or stopping time approximation: A comparison of two recent numerical methods for American option pricing using simulation and regression. Journal of Computational Finance 18, 65–120. doi:10.21314/JCF.2014.281.
- Valuing American options in a path simulation model. Transactions of the Society of Actuaries 45, 499–550.
- Pricing American-style options by Monte Carlo simulation: Alternatives to ordinary least squares. Journal of Computational Finance 18, 121–143. doi:10.21314/JCF.2014.279.
- Regression methods for pricing complex American-style options. IEEE Transactions on Neural Networks 12, 694–703. doi:10.1109/72.935083.
- Convergence of a Least-Squares Monte Carlo Algorithm for American Option Pricing with Dependent Sample Data. Mathematical Finance 28, 447–479. doi:10.1111/mafi.12125.