Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leave-one-out least squares Monte Carlo algorithm for pricing Bermudan options (1810.02071v4)

Published 4 Oct 2018 in q-fin.CP, q-fin.MF, and stat.ML

Abstract: The least squares Monte Carlo (LSM) algorithm proposed by Longstaff and Schwartz (2001) is widely used for pricing Bermudan options. The LSM estimator contains undesirable look-ahead bias, and the conventional technique of avoiding it requires additional simulation paths. We present the leave-one-out LSM (LOOLSM) algorithm to eliminate look-ahead bias without doubling simulations. We also show that look-ahead bias is asymptotically proportional to the regressors-to-paths ratio. Our findings are demonstrated with several option examples in which the LSM algorithm overvalues the options. The LOOLSM method can be extended to other regression-based algorithms that improve the LSM method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options. Management Science 50, 1222–1234. doi:10.1287/mnsc.1040.0258.
  2. Regression-based algorithms for life insurance contracts with surrender guarantees. Quantitative Finance 10, 1077–1090. doi:10.1080/14697680902960242.
  3. Pricing Bermudan options by nonparametric regression: Optimal rates of convergence for lower estimates. Finance and Stochastics 15, 655–683. doi:10.1007/s00780-010-0132-x.
  4. Practical policy iteration: Generic methods for obtaining rapid and tight bounds for Bermudan exotic derivatives using Monte Carlo simulation. Journal of Economic Dynamics and Control 37, 1342–1361. doi:10.1016/j.jedc.2013.03.004.
  5. A Lattice Framework for Option Pricing with Two State Variables. The Journal of Financial and Quantitative Analysis 23, 1–12. doi:10.2307/2331019.
  6. Numerical evaluation of multivariate contingent claims. Review of Financial Studies 2, 241–250.
  7. The Market Model of Interest Rate Dynamics. Mathematical Finance 7, 127–155. doi:10.1111/1467-9965.00028.
  8. The Valuation of American Put Options. The Journal of Finance 32, 449–462. doi:10.2307/2326779.
  9. Pricing American-style securities using simulation. Journal of Economic Dynamics and Control 21, 1323–1352. doi:10.1016/S0165-1889(97)00029-8.
  10. A stochastic mesh method for pricing high-dimensional American options. Journal of Computational Finance 7, 35–72. doi:10.21314/JCF.2004.117.
  11. Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance: Mathematics and Economics 19, 19–30. doi:10.1016/S0167-6687(96)00004-2.
  12. Simulation-based Value-at-Risk for nonlinear portfolios. Quantitative Finance 19, 1639–1658. doi:10.1080/14697688.2019.1598568.
  13. Sum of all Black-Scholes-Merton models: An efficient pricing method for spread, basket, and Asian options. Journal of Futures Markets 38, 627–644. doi:10.1002/fut.21909, arXiv:1805.03172.
  14. An analysis of a least squares regression method for American option pricing. Finance and Stochastics 6, 449–471. doi:10.1007/s007800200071.
  15. Option pricing: A simplified approach. Journal of Financial Economics 7, 229–263. doi:10.1016/0304-405X(79)90015-1.
  16. An improved least squares Monte Carlo valuation method based on heteroscedasticity. European Journal of Operational Research 263, 698–706. doi:10.1016/j.ejor.2017.05.048.
  17. Foresight Bias and Suboptimality Correction in Monte-Carlo Pricing of Options with Early Exercise: Classification, Calculation and Removal. Available at SSRN URL: http://christian-fries.de/finmath/foresightbias/.
  18. Foresight Bias and Suboptimality Correction in Monte-Carlo Pricing of Options with Early Exercise, in: Bonilla, L.L., Moscoso, M., Platero, G., Vega, J.M. (Eds.), Progress in Industrial Mathematics at ECMI 2006. 2008 edition ed., pp. 645–649. doi:10.1007/978-3-540-71992-2_107.
  19. Pricing American options: A comparison of Monte Carlo simulation approaches. Journal of Computational Finance 4, 39–88. doi:10.21314/JCF.2001.066.
  20. Chapter 8. Pricing American Options, in: Monte Carlo Methods in Financial Engineering. 2003 edition ed.. Springer, New York, pp. 421–478.
  21. Number of paths versus number of basis functions in American option pricing. The Annals of Applied Probability 14, 2090–2119. doi:10.1214/105051604000000846.
  22. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. 2nd edition ed., New York, NY. URL: https://hastie.su.domains/ElemStatLearn/.
  23. Pricing American Options: A Duality Approach. Operations Research 52, 258–270. doi:10.1287/opre.1030.0070.
  24. Convergence from Discrete- to Continuous-Time Contingent Claims Prices. The Review of Financial Studies 3, 523–546.
  25. Regression-based Monte Carlo methods for stochastic control models: Variable annuities with lifelong guarantees. Quantitative Finance 16, 905–928. doi:10.1080/14697688.2015.1088962.
  26. Drift Approximations in a Forward-Rate-Based LIBOR Market Model. Risk , 10.
  27. The optimal method for pricing Bermudan options by simulation. Mathematical Finance 28, 1143–1180. doi:10.1111/mafi.12158.
  28. LIBOR and swap market models and measures. Finance and Stochastics 1, 293–330. doi:10.1007/s007800050026.
  29. Effective sub-simulation-free upper bounds for the Monte Carlo pricing of callable derivatives and various improvements to existing methodologies. Journal of Economic Dynamics and Control 40, 25–45. doi:10.1016/j.jedc.2013.12.001.
  30. A displaced-diffusion stochastic volatility LIBOR market model: Motivation, definition and implementation. Quantitative Finance 3, 458–469. doi:10.1088/1469-7688/3/6/305.
  31. Iterative construction of the optimal Bermudan stopping time. Finance and Stochastics 10, 27–49. doi:10.1007/s00780-005-0168-5.
  32. An analysis of pricing methods for basket options. Wilmott Magazine 2004, 82–89.
  33. Refining the least squares Monte Carlo method by imposing structure. Quantitative Finance 14, 495–507. doi:10.1080/14697688.2013.787543.
  34. Valuing American Options by Simulation: A Simple Least-Squares Approach. The Review of Financial Studies 14, 113–147. doi:10.1093/rfs/14.1.113.
  35. Kriging metamodels and experimental design for Bermudan option pricing. Journal of Computational Finance 22, 37–77. doi:10.21314/JCF.2018.347.
  36. On the bounds for diagonal and off-diagonal elements of the hat matrix in the linear regression model. Revstat–Statistical Journal 14, 75–87.
  37. Comparison of least squares Monte Carlo methods with applications to energy real options. European Journal of Operational Research 256, 196–204. doi:10.1016/j.ejor.2016.06.020.
  38. A Practitioner’s Guide to Pricing and Hedging Callable Libor Exotics in Forward Libor Models. SSRN Electronic Journal doi:10.2139/ssrn.427084.
  39. Somewhere Over the Rainbow. Risk 1991, 63–66.
  40. Convergence of the Least Squares Monte Carlo Approach to American Option Valuation. Management Science 50, 1193–1203. doi:10.1287/mnsc.1030.0155.
  41. Value function approximation or stopping time approximation: A comparison of two recent numerical methods for American option pricing using simulation and regression. Journal of Computational Finance 18, 65–120. doi:10.21314/JCF.2014.281.
  42. Valuing American options in a path simulation model. Transactions of the Society of Actuaries 45, 499–550.
  43. Pricing American-style options by Monte Carlo simulation: Alternatives to ordinary least squares. Journal of Computational Finance 18, 121–143. doi:10.21314/JCF.2014.279.
  44. Regression methods for pricing complex American-style options. IEEE Transactions on Neural Networks 12, 694–703. doi:10.1109/72.935083.
  45. Convergence of a Least-Squares Monte Carlo Algorithm for American Option Pricing with Dependent Sample Data. Mathematical Finance 28, 447–479. doi:10.1111/mafi.12125.
Citations (3)

Summary

We haven't generated a summary for this paper yet.