Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime (1810.01084v5)

Published 2 Oct 2018 in math.CA

Abstract: We study a variant of the Cucker-Smale system with reaction-type delay. Using novel backward-forward and stability estimates on appropriate quantities we derive sufficient conditions for asymptotic flocking of the solutions. These conditions, although not explicit, relate the velocity fluctuation of the initial datum and the length of the delay. If satisfied, they guarantee monotone decay (i.e., non-oscillatory regime) of the velocity fluctuations towards zero for large times. For the simplified setting with only two agents and constant communication rate the Cucker-Smale system reduces to the delay negative feedback equation. We demonstrate that in this case our method provides the sharp condition for the size of the delay such that the solution be non-oscillatory. Moreover, we comment on the mathematical issues appearing in the formal macroscopic description of the reaction-type delay system.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.