Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dimensions of triangle sets (1810.00984v1)

Published 1 Oct 2018 in math.MG

Abstract: In this paper, we discuss some dimension results for triangle sets of compact sets in $\mathbb{R}2$. In particular, we prove that for any compact set $F$ in $\mathbb{R}2$, the triangle set $\Delta(F)$ satisfies [ \dim_{\mathrm{A}} \Delta(F)\geq \frac{3}{2}\dim_{\mathrm{A}} F. ] If $\dim_{\mathrm{A}} F>1$ then we have [ \dim_{\mathrm{A}} \Delta(F)\geq 1+\dim_{\mathrm{A}} F. ] If $\dim_{\mathrm{A}} F>4/3$ then we have the following better bound, [ \dim_{\mathrm{A}} \Delta(F)\geq \min\left{\frac{5}{2}\dim_{\mathrm{A}} F-1,3\right}. ] Moreover, if $F$ satisfies a mild separation condition then the above result holds also for the box dimensions, namely, [ \underline{\dim_{\mathrm{B}}} F\geq \frac{3}{2}\underline{\dim_{\mathrm{B}}} \Delta(F) \text{ and }\overline{\dim_{\mathrm{B}}} F\geq \frac{3}{2}\overline{\dim_{\mathrm{B}}} \Delta(F). ]

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube