Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Sequence Labeling with Actor-Critic Training (1810.00428v1)

Published 30 Sep 2018 in cs.LG, cs.AI, cs.CL, and stat.ML

Abstract: Neural approaches to sequence labeling often use a Conditional Random Field (CRF) to model their output dependencies, while Recurrent Neural Networks (RNN) are used for the same purpose in other tasks. We set out to establish RNNs as an attractive alternative to CRFs for sequence labeling. To do so, we address one of the RNN's most prominent shortcomings, the fact that it is not exposed to its own errors with the maximum-likelihood training. We frame the prediction of the output sequence as a sequential decision-making process, where we train the network with an adjusted actor-critic algorithm (AC-RNN). We comprehensively compare this strategy with maximum-likelihood training for both RNNs and CRFs on three structured-output tasks. The proposed AC-RNN efficiently matches the performance of the CRF on NER and CCG tagging, and outperforms it on Machine Transliteration. We also show that our training strategy is significantly better than other techniques for addressing RNN's exposure bias, such as Scheduled Sampling, and Self-Critical policy training.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Saeed Najafi (5 papers)
  2. Colin Cherry (38 papers)
  3. Grzegorz Kondrak (14 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.