Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

A Sheet of Maple to Compute Second-Order Edgeworth Expansions and Related Quantities of any Function of the Mean of an iid Sample of an Absolutely Continuous Distribution (1810.00289v1)

Published 30 Sep 2018 in stat.CO, math.ST, and stat.TH

Abstract: We designed a completely automated Maple ($\geqslant 15$) worksheet for deriving Edgeworth and Cornish-Fisher expansions as well as the acceleration constant of the bootstrap bias-corrected and accelerated technique. It is valid for non-parametric or parametric bootstrap, of any (studentized) statistics that is -a regular enough- function of the mean of an iid sample of an absolutely continuous distribution. This worksheet allowed us to point out one error in the second-order Cornish-Fisher expansion of the studentized mean stated in Theorem 13.5 by Das Gupta in [8, p. 194] as well as lay the stress on the influence of the slight change of the normalizing constant when computing the second-order Edgeworth and Cornish-Fisher expansions of the t-distribution as stated in Theorem 11.4.2 by Lehman and Romano in [14, p. 460]. In addition, we successfully applied the worksheet to a complex maximum likelihood estimator as a first step to derive more accurate confidence intervals in order to enhance quality controls. The worksheet also features export of Maple results into R code. In addition, we provide R code to plot these expansions as well as their increasing rearrangements. All these supplemental materials are available upon request.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.