Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Method of automorphic functions for an inverse problem of antiplane elasticity (1809.11151v1)

Published 28 Sep 2018 in math.CV

Abstract: A nonlinear inverse problem of antiplane elasticity for a multiply connected domain is examined. It is required to determine the profile of $n$ uniformly stressed inclusions when the surrounding infinite body is subjected to antiplane uniform shear at infinity. A method of conformal mappings of circular multiply connected domains is employed. The conformal map is recovered by solving consequently two Riemann-Hilbert problems for piecewise analytic symmetric automorphic functions. For domains associated with the first class Schottky groups a series-form representation of a ($3n-4$) parametric family of conformal maps solving the problem is discovered. Numerical results for two and three uniformly stressed inclusions are reported and discussed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.